BIOLOGY - BY1

No. Answer Mark

1.

Feature	Prokaryotic	Eukaryotic	
mitochondria	Absent (not: no organelles)	present;	
Arrangement of DNA	circular/no chromosomes; (not: loop)	DNA forms chromosomes	
Position of DNA	Free in cytoplasm	in nucleus/ bound by membrane;	
Composition of cell wall if present	murein peptidoglycan (not: not cellulose)	cellulose/chitin;	
Size of ribosomes	Small/70S; (not: other figures)	Large/80S;	

1 mark per row

(Total 5 marks)

2. (a) capable of immobilisation/fixed to inert matrix or named; Stable/able to withstand changes in temperature or pH;

specific to test or substrate; (not: ref. turn over number)

2 max

(b) allows <u>glucose</u> through; (not: ref. small molecules) prevents passage of other molecules/solutes (not: ref. substances)

2

(c) glucose broken down by enzyme;

Products/oxygen affect/detected by electrode;

(not: measured by)

electric signal generated/chemical to electrical;

greater conc. glucose the greater the signal;

2 max

(d) enzyme activity/ rate of diffusion of glucose affected;

change rate of reaction;

unreliable result;

(not: ref. enzyme denaturation/fair experiment/control/false

reading/confidence)

2 max

(Total 8 marks)

marks)

3. (a) (i) fluid mosaic model; mosaic of protein molecules/irregularly or randomly arranged; lipid layer fluid/can move; 3 A = phospholipid bilayer/fatty acid tails; (not: ref. (ii) hydrophobic) B = extrinsic/surface protein/glycoprotein; C = transmembrane/carrier/intrinsic protein; 3 allows passage of polar/charged/ionic/hydrophilic molecules/facilitated diffusion; (allow: ref. water/non lipid soluble; not: named molecule) 1 (b) movement up/against a concentration gradient; 2 requires energy/ATP; (c) maintain water potential; obtain nutrients/metabolites or named e.g. glucose; obtain oxygen/remove carbon dioxide; secrete molecules; remove toxic substances or named; (not: waste products) 2 max (Total 11 4. (a)

5.

	11.6 cm ³ min ⁻¹ ; (allow: 5.8/30 x 60) correct answer + units =2; correct answer - units =1; incorrect answer, correct working = 1	2
(b)	Maximum/higher concentration of substrate; all active sites occupied; (not: ref. unoccupied at start)	2
(c) (i)	increase in rate from 20 - 100°C/up to 100°C; fall from 100 - 130°C; increase in kinetic energy; molecules move faster; (not: more) More successful collisions/more enzyme-substrate complexes formed; up to optimum; (not: 100°C unqualified) above optimum increased vibrations; hydrogen bonds break; Loss/change of shape of active site; (not: ref. enzyme) denature;	6 max
(ii)	enzymes have different optimum temperatures/ human amylase has optimum of 37°C, bacterial 100°C; human amylase denatures at a lower temperature;	1 1 (Total 12 marks)
(a) (i)	amino acid; triglyceride; (not: lipid/triglycerol)	2
(ii)	nitrogen/sulphur; (not: chemical symbols)	1
(b)	condensation; peptide;	2
(c) (i) (ii)	blue changing to mauve/purple colour is positive result;	

A = matrix;6. (a) B = crista/internal membrane; 2 (b) E is the site of protein synthesis; Polypeptide chains build up at ribosome; transports polypeptides/proteins: ribosomes read genetic code (allow: receive mRNA); 2 max F buds off vesicles/package proteins into vesicles; these contain molecules for secretion; transport protein molecules to cell surface/membrane; synthesis of glycoproteins/modification of proteins; 2 max (c) secretory cell involved in active processes/metabolically active; ATP/energy dependent; ATP manufactured by C; hormone synthesis requires ATP; 2 max (d) cut in different plane/AW; (Total 9 marks) 7. (a) cell/plasma membrane; 1 50% of cells plasmolysed/point of incipient (b) plasmolysis/membrane just in contact with wall/at incipient plasmolysis ΨP=0KPa; because cell left in solution for one hour; equilibrium reached/no net movement of water; solute potential inside equal to that outside; outside solution is given as -600kPa; 3 max (c) K is cell wall which is inelastic/won't stretch: as protoplast/cell contents expand/swell; (not: ref. vacuole unqualified) as water passes into cell; pushes against expanding protoplast/cytoplasm/cell contents: pressure potential is generated by resistance of cell wall; 3 max (Total 7 marks)

8.	(a) (i)	Α	daughter cells exact copies/genetically identical cells;	
		В	same number of chromosomes as parents;	
		С	genetic stability;	
		D	important for growth;	
		Е	replacement of missing tissue/parts;	
		F	repair to wounds/(damaged) tissue/cell replacement plus e.g. skin/hair/gut lining/blood cells;	
		G	asexual reproduction plus e.g. bulbs tubers runners/used by bacteria/yeast;	
		Н	allows large numbers of offspring to be produced/ref. cloning/quick colonisation;	
		I	ref. to cancer i.e. proliferation of cells;	6
	(ii)	J	haploid vs. diploid/mitosis maintains chromosome numbers, meiosis halves it; (not: just 23 vs 46)	
		K	two divisions involved;	
		L	chromosomes are different/crossing over occurs; (allow: ref. independent assortment)	
		M	meiosis produces gametes; (allow: examples e.g. sperm <u>and</u> egg cells; not: sex cells))	
		N	allows for variation;	
		0	allows sexual reproduction to take place;	4 10
	(b)	Α	polynucleotide/chain of nucleotides;	
		В	nucleotide consists of phosphate, sugar plus base;	
		С	sugar is deoxyribose;	
		D	base contains nitrogen; (allow: ref. nitrogenous)	
		E	four bases are adenine, guanine, cytosine and thymine; (not: letters/ref. uracil)	
		F	sugar phosphate backbone;	
		G	two polynucleotide chains <u>linked;</u>	
		Н	antiparallel (stated, in context);	
		I	ref. polynucleotide chains/base pairs held together by hydrogen bonds;	
		J	complementary base pairing;	
		K	A-T, G-C;	
		L	pairing of purines and pyrimidines;	
		M	double helix;	
		N	purines double ring and pyrimidines are single ring;	
		0	ref. sequence of bases is genetic code;	10