BIOLOGY - BY1

No.
Answer
Mark
1.

Feature	Prokaryotic	Eukaryotic
mitochondria	Absent (not: no organelles)	present;
Arrangement of DNA	circular/no chromosomes; (not: loop)	DNA forms chromosomes
Position of DNA	Free in cytoplasm	in nucleus/ bound by membrane;
Composition of cell wall if present	murein peptidoglycan (not: not cellulose)	cellulose/chitin;
Size of ribosomes	Small/70S; (not: other figures)	Large/80S;

1 mark per row
(Total 5 marks)
2. (a) capable of immobilisation/fixed to inert matrix or named;

Stable/able to withstand changes in temperature or pH ; specific to test or substrate; (not: ref. turn over number)

2 max
(b) allows glucose through; (not: ref. small molecules)
prevents passage of other molecules/solutes
(not: ref. substances)
(c) glucose broken down by enzyme;

Products/oxygen affect/detected by electrode;
(not: measured by)
electric signal generated/chemical to electrical;
greater conc. glucose the greater the signal;
2 max
(d) enzyme activity/ rate of diffusion of glucose affected;
change rate of reaction;
unreliable result;
(not: ref. enzyme denaturation/fair experiment/control/false
2 max
reading/confidence)

2

-

(Total 8 marks)
3. (a) (i) fluid mosaic model;
mosaic of protein molecules/irregularly or randomly arranged;
lipid layer fluid/can move;
(ii) $\mathrm{A}=$ phospholipid bilayer/fatty acid tails; (not: ref. hydrophobic)
B = extrinsic/surface protein/glycoprotein;
C = transmembrane/carrier/intrinsic protein;
(iii) allows passage of polar/charged/ionic/hydrophilic molecules/facilitated diffusion; (allow: ref. water/non lipid soluble; not: named molecule)
(b) movement up/against a concentration gradient; requires energy/ATP;

2

(c) maintain water potential;
obtain nutrients/metabolites or named e.g. glucose;
obtain oxygen/remove carbon dioxide;
secrete molecules;
remove toxic substances or named;
(not: waste products)
4. (a)
$11.6 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$;
(allow: $5.8 / 30 \times 60$) correct answer + units $=2$;
correct answer - units $=1$; incorrect answer, correct working
$=1$
(b) Maximum/higher concentration of substrate;
all active sites occupied;
(not: ref. unoccupied at start)
2
(c) (i) increase in rate from $20-100^{\circ} \mathrm{C} /$ up to $100^{\circ} \mathrm{C}$;
fall from $100-130^{\circ} \mathrm{C}$;
increase in kinetic energy;
molecules move faster; (not: more)
More successful collisions/more enzyme-substrate complexes formed;
up to optimum; (not: $100^{\circ} \mathrm{C}$ unqualified)
above optimum increased vibrations;
hydrogen bonds break;
Loss/change of shape of active site; (not: ref. enzyme)
denature;
6 max
(ii) enzymes have different optimum temperatures/
human amylase has optimum of $37^{\circ} \mathrm{C}$, bacterial $100^{\circ} \mathrm{C}$;
human amylase denatures at a lower temperature;
5. (a) (i) amino acid;
triglyceride; (not: lipid/triglycerol)
(ii) nitrogen/sulphur; (not: chemical symbols)
(b) condensation;
peptide;
2
(c) (i) add Biuret to test solution; (not: if ref. to boiling) $\mathbf{1}$
blue changing to mauve/purple colour is positive result;
1
(ii) little colour change/mauve colour may be masked;
6. (a) $A=$ matrix;
$B=$ crista/internal membrane;
(b) E is the site of protein synthesis;

Polypeptide chains build up at ribosome;
transports polypeptides/proteins;
ribosomes read genetic code (allow: receive mRNA);
2 max

F buds off vesicles/package proteins into vesicles;
these contain molecules for secretion;
transport protein molecules to cell surface/membrane;
synthesis of glycoproteins/modification of proteins;
2 max
(c) secretory cell involved in active processes/metabolically active;
ATP/energy dependent;
ATP manufactured by C;
hormone synthesis requires ATP;
2 max
(d) cut in different plane/AW;

1
(Total 9 marks)
7. (a) cell/plasma membrane;
(b) 50% of cells plasmolysed/point of incipient plasmolysis/membrane just in contact with wall/at incipient plasmolysis $\Psi P=0 \mathrm{KPa}$;
because cell left in solution for one hour; equilibrium reached/no net movement of water; solute potential inside equal to that outside; outside solution is given as -600 kPa ;
(c) K is cell wall which is inelastic/won't stretch;
as protoplast/cell contents expand/swell; (not: ref. vacuole unqualified)
as water passes into cell;
pushes against expanding protoplast/cytoplasm/cell contents;
pressure potential is generated by resistance of cell wall;

1

3 max
8. (a) (i) A daughter cells exact copies/genetically identical cells;

B same number of chromosomes as parents;
C genetic stability;
D important for growth;
E replacement of missing tissue/parts;
F repair to wounds/(damaged) tissue/cell replacement plus e.g. skin/hair/gut lining/blood cells;
G asexual reproduction plus e.g. bulbs tubers runners/used by bacteria/yeast;
H allows large numbers of offspring to be produced/ref. cloning/quick colonisation;
I ref. to cancer i.e. proliferation of cells;
(ii) J haploid vs. diploid/mitosis maintains chromosome numbers, meiosis halves it; (not: just 23 vs 46)
K two divisions involved;
L chromosomes are different/crossing over occurs; (allow: ref. independent assortment)
M meiosis produces gametes; (allow: examples e.g. sperm and egg cells; not: sex cells))
$\mathrm{N} \quad$ allows for variation;
O allows sexual reproduction to take place;
(b) $\mathrm{A} \quad$ polynucleotide/chain of nucleotides;

B nucleotide consists of phosphate, sugar plus base;
C sugar is deoxyribose;
D base contains nitrogen; (allow: ref. nitrogenous)
E four bases are adenine, guanine, cytosine and thymine; (not: letters/ref. uracil)
F sugar phosphate backbone;
G two polynucleotide chains linked;
H antiparallel (stated, in context);
I ref. polynucleotide chains/base pairs held together by hydrogen bonds;
J complementary base pairing;
K A-T, G-C;
L pairing of purines and pyrimidines;
M double helix;
$\mathrm{N} \quad$ purines double ring and pyrimidines are single ring;
O ref. sequence of bases is genetic code;

